Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge.
نویسندگان
چکیده
Excess phosphorus (P) in wastewaters promotes eutrophication in receiving waterways. A cost-effective method such as use of novel low-cost adsorbents for its adsorptive removal would significantly reduce such impacts. Using batch experiments, the intrinsic dynamics of P adsorption by waste alum sludge (an inevitable by-product of drinking water treatment plants) was examined. Different models of adsorption were used to describe equilibrium and kinetic data, calculate rate constants and determine the adsorption capacity. Results indicate that the intraparticle rate constant increased from 0.0075 mg g(-1)min(-1) at 5 mg L(-1) to 0.1795 mg g(-1)min(-1) at 60 mg L(-1) indicating that more phosphate is adsorbed per g min at higher P concentration. Further analyses indicate involvement of film and particle diffusion mechanisms as rate controlling steps at lower and higher concentrations, respectively. Mass transfer coefficient obtained ranged from 1.7 × 10(-6) to 1.8 × 10(-8) indicating a rapid transportation of phosphate molecules onto the alum sludge. These results further demonstrates that alum sludge-hitherto thought of as undesirable waste, can be used as novel adsorbent for P removal from wastewater through various applications, thus offsetting a portion of the disposal costs while at the same time improving water quality in sensitive watersheds.
منابع مشابه
Application of the Modified Biochar from Sewage Sludge for Removal of Pb(II) from Aqueous Solution: Kinetics, Equilibrium and Thermodynamic Studies
An adsorbent Modified Biochar (MB) made from sewage sludge was characterized with FT-IR spectra and SEM image. The effects of contact time, solution temperature, pH and initial concentration on the adsorption performance Pb(II) onto MB was investigated in a batch adsorption experiment. Results showed that MB had great adsorption capacity, due to the existence of hydroxyl, carboxyl, ether, alcoh...
متن کاملDirect Blue 71 Removal from Aqueous Solutions by Adsorption on Pistachio Hull Waste: Equilibrium, Kinetic and Thermodynamic Studies
Background and Purpose: Azo dyes including Direct Blue 71 (DB71) are toxic, mutagenic and carcinogenic contaminants in effluents of industries. This study aimed to investigate the adsorption of DB71 from aqueous solution onto pistachio hull waste (PHW) as a low-cost adsorbent. Materials and Methods: A series of experiments were performed via batch adsorption technique to examine the effect o...
متن کاملRemoval of Acid Orang 7(AO7) Dye from Aqueous Solution by Using of Adsorption on to Rice Stem Waste: Kinetic and Equilibrium Study
Background and purpose: dye is widely used in industries such as cosmetic, leather, paper and textile and release to the environment via their effluents. The purpose of this study was to compare the efficiency of low-cost adsorbents in acid orang 7 dyes removal from water. Materials and Methods: The Rice Stem biomass was sun dried, crushed and sieved to particle sizes in range of 1-2 mm. Then ...
متن کاملNickel (II) Adsorption from Aqueous Solutions by Physico-Chemically Modified Sewage Sludge
This study assesses teh potential of activated carbon prepared from sewage sludge for nickel ions adsorption from aqueous solutions. Activated carbon physicochemical properties were determined. Batch adsorption experiments were performed as a function of pH solution, adsorbent dose, initial metal ions concentration, contact time and temperature. Teh experimental data were analyzed by teh La...
متن کاملDewatered alum sludge: a potential adsorbent for phosphorus removal.
Alum sludge refers to the by-product from the processing of drinking water in water treatment works. In this study, groups of batch experiments were designed to identify the characteristics of dewatered alum sludge for phosphorus adsorption. Air-dried alum sludge (moisture content 10.2%), which was collected from a water treatment works in Dublin, was subjected to artificial P-rich wastewater a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of hazardous materials
دوره 184 1-3 شماره
صفحات -
تاریخ انتشار 2010